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*Why?
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But

ax’+bx* +ox +dx’+ex+f =0 =>x=2?
SINX+X=0 =>x=?
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Nonlinear Equation

Solvers
I 1
Bracketing Graphical Open Methods
4 ) 4 )
Bisection Newton Raphson
False Position
(Regula-Falsi) Secant
N / \ /
All Iterative
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Example 5.1

The Graphical Approach

Problem Statement. Use the graphical approach to determine the drag coefficient ¢
needed for a parachutist of massm = 68.1 kg to have a velocity of 40 m/s after free-falling
for time t = 10 s. Note: The acceleration due to gravity is 9.8 m/s-.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using the
parameters r = 10, g = 9.8, v =40, and m = 68.1:

C) . 98{68 1 (l - E—(ﬂfﬁﬂ-lllﬂ) — 40

C

or

667.38
c

fle) = (1 — =0146833) _ 40 (E5.1.1)

Various values of ¢ can be substituted into the nght-hand side of this equation to compute
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Bracketing Methods

(Dr t WO nnoint methnde for findino rontc)
\\JL, LVVY U PULLLL 11IINVULILIVUGUD 1V1L LLLLULLLE lUUl«L)}
* Two 1nitial guesses for the £ 4
root are required. These
guesses must “bracket” or S0
be on either side of the root.
e [Ifone root of a real and o
continuous function, f(x)=0,
1s bounded by values x=x,, X
=x, then -
f(Xl) f(X ) <0. (The function
changes sign on opposite sides of the
root) 0
—-10 |—
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c f(c) |

4 34.115
8 17.653
12 6.067
{e] -2.269
20 -8.401

These points are plotted in Fig. 5.1. The resulting curve cresses the ¢ axis between 12 and
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checkzd by substituting it into Eq. (E5.1.1) to yield

667.38
fl:l‘:l’?s) — W[] — E-D.HﬁEH[MJE}) — 40 = 0.059

which is close to zero. It can also be checked by substituting it into Eq. (PT2.4) along with
the parameter values from this example to give

o 0.8(68.1)
1475

which is very close to the desired fall velocity of 40 m/s.

(] ___e—{t:l_?i.r'ﬁﬁ.l}]ﬂ) — 40.059
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No answer (No root)
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i

Nice case (one root)

Sy

Oops!! (two roots!!)

FEES

Three roots( Might
work for a while!!)

(d)
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Figure 5.3
J(x)

J(x) 4

-

ra

by Martin Mendez,

UASLP

X,

(b)

I

e |

Two roots( Might
work for a while!!)

Discontinuous
function. Need
special method

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



MANY-MANY roots. What do we

do?

T T

f(x)=sin 10x+cos 3x

4 5
X
2ﬁ |
Y O_JA y I‘
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The Bisection Method

For the arbitrary equation of one variable, {(x)=0

1. Pick x; and x, such that they bound the root of
interest, check 1f f(x;).1(x,) <0.

2. Estimate the root by evaluating 1] (x,+x,)/2].

3. Find the pair

o I 1(x). 1(x;+x,)/2]<0, root lies in the lower interval,
then x =(x,+x,)/2 and go to step 2.
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~U, 100t

lies in the upper interval, then
x= [(x+x,)/2, go to step 2.

If 1(x,). f1(x+x,)/2]

=0, then

root 1s (x+x,)/2 and

terminate.

Compare ¢, with g,

X

If g,<g, stop. Otherwise

repeat the process.

by Martin Mendez,
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2
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X, + X,
2
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by N

Bisecticn

Problem Statement. Use bisection to solve the same problem approached graphically in
Example 5.1.

Scluticn.  The first step in bisection is to guess two values of the unknown (in the present
problem, ¢) that give values for f{¢) with different signs. From Fig. 5.1, we can see that the
function changes sign between values of 12 and 16. Therefore, the initial estimate of the
root x, lies at the midpoint of the interval

12416
r = 2 -

x 14

This estimate represents a true percent relative error of £, = 5.3% (ncte that the true value
of the root is 14.7802). Next we compute the product of the function value at the lower
bound and at the midpoint:

f(12) f(14) = 6.067(1.569) = 9.517

whichis greater than zero, and hence nosign change occurs between the lower bound and
the midpoint. Consequently, the root must be located between 14 and 16. Therefore, we
create a new interval by redefining the lower bound as 14 and determining a revised root
estimate as
14 4+ 16
X, = —— =15
r 2

which represents a true percent error of £, = 1.5%. The process can be repeated to obtain
refined estimates. For example,

F(14) f(15) = 1.569(—0.425) = —0.666

UASLr
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Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the rog
estimate for the third iteration is calculated as

xr=]4:15=14-5

which represents a percent relative error of ¢, = 1.9%. The method can be repeated
the result is accurate enough to satisfy your needs.




Evaluation of Method

Pros Cons
» Easy * Slow
* Always find root  Know a and b that
 Number of iterations bound root
required to attain an * Multiple roots
absolute error can be e No account is taken of
computed a priori. f(x,) and f(x,), if f(x,) is

closer to zero, it 1s likely
that root 1s closer to Xx; .
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FIGURE 5.7

trrors for the bisection meihod.
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FIGURE 5.10 FUNCTION Bisect(xl, xu, es, imax, xr, iter, ea)
Pseudocode for function to iter = 0
implement bisection. 00
xrold = xr
xr = (x! + xu) /2
iter = iter + 1
IF xr # 0 THEN
ea = ABS({xr — xrold) [ xr) = 100
END IF
test = f(x1) * f(xr)
IF test < 0 THEN
Xu = Xr
ELSE IF test > O THEN
xl = xr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END 00
Bisect = xr
END Bisect




How Many Iterations will It Take?

Length of the first Interval
After 1 1teration

After 2 1terations

L
£, <—x100% &, <&
X

by Martin Mendez,
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L =b-a
L,=L. 2
L,=L./4
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 If the absolute magnitude of the error Is

£, X
100%

and L_=2, how many iterations will you
have to do to get the required accuracy In
the solution?

=10"*

10°* =23k — 2 =2x10* =k=14.3=15
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iter =0
0o
xrold = xr

xr= (xl + xu)/t2
iter = iter + 1
IF xr # 0 THEN
ea = ABS({xr — xrold) f xr) = 100
END IF
test = f(x1) = f(xr)
IF test < (0 THEN
Xu = xr
ELSE IF test > 0 THEN
x] = xr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END 0O
Bisect = xr
END Bisect

FUNCTION Bisect(xl, xu, es, imex, xr. iter, ea) FUNCTION Bisect(x], xu, es, imax, xr, iter, ea)

iter =0
fl = fixl)
0o

END DO
Bisect = xr
END Bisect

xrold = xr
xr= (xI + xuj /!l 2
fr = f{xr)
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) * 100
END IF
test = £l » fr
IF test < 0 THEN
XU = Xxr
ELSE IF test > O THEN
x1 = xr
fl = fr
ELSE
ea = (
END IF
IF ea < es OR iter = imax EXIT




The False-Position Method
(Regula-Falsi)

» Ifareal rootis
bounded by x;and x, of
f(x)=0,

 Then we can
approximate the
solution by doing a
linear interpolation
between the points [Xx,,

f(x)] and [x,, f(x,)]

 to find the x, value
such that 1(x,)=0, 1(x) 1s
the linear
approximation of f(x).

by Martin Mendez,
UASLP

fx) |

3

foa) _ flx) _
X, — X| Xr = Xy g
) f(x,)

— =

///////Zé_,

~ e
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Cross-multiply Eq. (5.6) to yield

fn)xe = xa) = fle) (e = x0)
Collect terms and rearrange:

© [fix) = fa )] = x f(n) = x fix,)
Divide by 1w —f{x,):

) Xi) = & {-u}
it flx (B5.1.1)

i ﬂ-'ﬂ'} - f(-xlr)
This is one form of the method of false position. Note that it allows
the computation of the root x, as a function of the lower and upper
spesses x; and v, It can be put in an alternative form by expanding

it:
_ N _n.t,:)
T o) = fix)

.

B X flx,)
f(-'rf) - f(xu)

by Martin Mendez,
UASLP

then adding and subtracting x, on the right-hand side:

Lo mf) uf)
T fy = fley T A = flx)
Collecting terms yields
X =X Ko 'ﬁ.l',r) _ xl’f{-’tu}
o f{'ﬁ:l_f['rlrj f{'r.f:l'_f('ruj
or
X =x, Sl )xy = x,)

) — fGxa)

whichis the same as Eqg. (5.7). We use this form because it involves
one less function evaluation and one less multiplication than
Eq. (B3.1.1). In addition, it is directly comparable with the secant
method which will be discussed in Chap. 6.

22
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Procedure

1. Find a pair of values of x, x; and x, such that
f=1(x,) <0 and { =f(x,) >O0.

2. Estimate the value of the root from the
following formula (Refer to Box 5.1)

. _ﬂ:-ru}(-ﬂ - .f”}
f[xlr) - __f[-xﬂ)

and evaluate (x,).

by Martin Mendez,
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False Position

Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 {Eq. (E5.1.1)].

Solution. As in Example 5.3, initiate the computation with guesses of x;= 12 and
x,= 16.

First iteration:

=12 flx;) = 6.0699
X, =16 flx,) = —2.2688
—2.2688(12 — 16)

F= 16 — = 149113
x 6.0669 — (—2.2688)

which has a true relative error of 0.89 percent.

Second iteration:

flxp) f(x,) = —1.5426
i

Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the "‘311:
iteration, x, = 14.9113:

X = 12 fix)) = 6.0699
x, =149113 flx,) =—0.2543

—0.2543(12 - 14.
x, = 14.9113 — (12— 145113) _ 4 2945
6.0669 — (—0.2543)
by which has true and approximate relative errors of 0.09 and 0.79 percent. Additional jtera 24

U. tions can be performed to refine the estimate of the roots.

2 rhaPEEL 1 o B A

I




FIGURE 5.13

Comparison of the relative
errors of the bisection and the
false-position methods.
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FIGURE 5.14
Plot of fix) = x'9 —
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FUNCTION ModFalsePos(xl. xu, es, imax, xr, iter. ea)
iter = 0
fl = f(x1)
fu = f(xu)
Do
xrold = xr
xr=xu— fu* (xI — xu) | (f] = fu)
fr = f(xr)
iter = iter + 1
IF xr <> (0 THEM
e2 = Adbs{(xr — xrcid) |/ xr} * 100
END IF
test = f1 * fr
iF test < O THEN

Xu = xr
fu = f(xu)
iu=20
il=1l +1

If il = 2 THEN f1 = ¥f1 7/ 2
ELSE IF test > O THEN
xl = xr
fl = f(x1)
il=20
iu= ju+ 1
IF ju= 2 THEN fu = fu | 2
ELSE
ea = 0
END IF
IF ea < es OR iter = imax THEN EXIT
END DO
ModFalsePos = xr
END ModFalsePos




3. Use the new point to replace one of the
original points, keeping the two points on
opposite sides of the x axis.

If f(x,)<0 then x=x, ==> f=1(x,)
If 1(x,)>0 then x =x, ==> f =1(x,)

It 1(x,)=0 then you have found the root and
need go no further!

by Martin Mendez, 28
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4. See 1f the new x, and x_ are close enough for
convergence to be declared. If they are not go back

to step 2.

Why this method?
— Faster
— Always converges for a single root.

=>» See Sec.5.3.1, Pitfalls of the False-Position Method

Note: Always check by substituting estimated root in the
original equation to determine whether {(x,) = 0.

by Martin Mendez, 29
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5.1 Determine the real roots of f(x) = ~0.6x*+24x+ 5.5

(a) Graphically. |

(b) Using the quadratic formula.

ic) Using three iterations of the bisection method to determine

the highesi roct. Employ initial guesses of x;, =5 and x,, = 10.
Compule the estimated error £, and the true error &, after each
iteration.

5.1 Determine the real rootof f(x) = 4x' —6x>+ Tx =2.3:

(a) Graphically.

(b} Using bisection to locate the root. Employ initial guesses of
;= 0 and x, = | and iterate until the estimated error &, falls
below a level of ¢, = 10%.

5.3 Determine the real root of f(x)= —26+ 85x — 9lx?+

Mo -8t + a7

(a) Graphically.

(b) Using bisectiontodetermine theroot toe; = 10%. Employini-
tial guesses of x; = 0.5and x, = 1.0.

(c) Perform the same computation as in (b) but use the false-
position method and &; =0.2 %.

3.4 (a) Determine the rootsof f(x) = =13 = 20x + 191 — 3x°

graphically. In addition, determine the firstroot of the function with

(b) bisection. and (¢) false position. For (b) and (¢) use initial

by Martin! guesses of vy = —1 and x, = 0. and a stopping criterion of [%.

UASLP
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5.13 The velocity v of a falling parachutist is given by
v =£"u U _ E--lr,-"mh]
C

where g = 9.8 m/s”. For a parachutist with a drag coefficient
¢ = 15 kg/s, compute the mass m so that the velocity is v = 35 m/s

atr =9 s. Use the false-position method to determine m to a level
ofe; =0.1%.




OPEN METHODS

FIGURE 6.1

Graphicai depiciion cf the
fundamental ditference between
the {a} bracketing and {b) ond
[c} open methods for oot
location. In (a), which is the
bisection method, the root is
constrained within the inferval
crescribed by x; and x. In
contrast, for the open method
depicted in [bl and (], o
formula is used lo project from
x. 10 X;41 in an iterative fashion.
Thus, the method can either (&)
diverge or [c) converge rapidly,
depending on the value of the
initial guess.

by Martin Mendez,
UASLP

flxh 4

e
X
%

—_—

Flo 4

flx)

(b)
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Simple Fixed-point Iteration

*Rearrange the function so that x 1s on the
left side of the equation:

f(X)=0 = g(xX)=x
X, =g(X,_) X, given, k=1,2,...
*Bracketing methods are “convergent”.

*Fixed-point methods may sometime
“diverge”, depending on the stating point
(initial guess) and how the function behaves.

Chapter 6 33
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Example:

f(X)=x"—x-2 X >0
g(x)=Xx" -2
or

g(X)=vX+2

Ol

9(X) =1+
X

Chapter 6
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This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation. For example,

=2x+3=0
can be simply manipulated to yield

43
2

X =

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides to yield
xX=snx+x

The utility of Eq. (6.1) 1s that it provides a formula to predict a new value of x as a
function of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can be used
to compute a new estimate x;. as expressed by the iterative formula

¥t = g(x) (52)

by Martin Mendez, 35
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EXAMPLE 6.1  Simple Fixed-Point lteration

Problem Statement.  Use simple fixed-point iteration to locate the root of f(x) = e™* — x.

Solution.  The function can be separated directly and expressed in the form of Eq. (6.2) as

r— _':J
Xiy) = €

Starting with an initial guess of xg = 0, this iterative equation can be applied to Cﬂmputgf_}

b T ST NS T S T TR SRS A L A e BT e P e LR T

i XxX; Ea{ﬂ.r"n] I i
0 0 100.0 Almost linear
] 1.000000 100 0 ey

2 0.367879 171.8 35.1

3 0.692201 46.9 221

4 0.500473 38.3 11.8

5 0.606244 17.4 65.89

6 0.5453%96 11.2 3.83

7 0.579612 5.90 2.20

8 0.560115 348 1.24

Q 0.571143 1.93 0.705
10 0.564879 b1y 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329,

by Martin Mendez, 36
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Convergence Figure 6.2

fx)
\_\___.f'(.r) =gk
 x=g(x) can be expressed e
o . ‘F 4
as a pair of equations: o
Y1:X i (a)
y,=g(x) (component e |
equations)
 Plot them separately.
i Root
b _
(h) |
Chapter 6 37
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'FIGURE 6.3
Graphical depiction of (a} and ¥4 Y4
|bl convergence and [c) and [d]
divergence of simple fixed-point
iteration. Graphs (a} and [c] are
called monotone patterns,
whereos (bl and (d) are called
oscillating or spiral patlerns.
MNote that convergence occurs
when lg'lx)| < 1.

(b)

="

£p

(c)
UASLP
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Conclusion

» Fixed-point iteration converges if

9'(x)|<1 (slope of the line f(x) = x)

*When the method converges the error 1s
roughly proportional to or less than the error of
the previous step, therefore 1t 1s called “linearly

convergent.”

Chapter 6
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- FUNCTION Fixpt(x0, es. imax, iter, ea) -

xr = x0

iter=10

0o
xrold = xr
xr = g(xrold)
iter = iter + 1
IF xr # O THEN

o = xr — xrold ‘ 100

xr

END IF
IF ea < es OR iter = imax EXIT
END 0O
Fixpt = xr
END Fixpt




Newton-Raphson Method

* Most widely used method.

* Based on Taylor series expansion:

(%)= T06)+ F/O)AX+ T7(%)

The root 1s the value of x.

+OAX’

AX?
2!
when f(x.,,) =0

1+1

Rearranging,

0= f(x )+ f(x )( X )

Solve for

i1+1

T (%)
F'(x:)

Newton-Raphson formula

Chapter 6
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A convenient method for /@]

functions whose
derivatives can be
evaluated analytically. It
may not be convenient

fx)

Fig. 6.5

Slope = f"(x)

for functions whose
derivatives cannot

valuated a

Chapter 6

| ]
'
i |
: - f(x) -0
|
|
|
& >
Xisl X ¥
Lﬂ_l
Xi = Xig
42
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EXAMPLE 6.3

by Martin Mendez,

UASLP

1

Newton-Raphson Method
Problem Statement. Use the Newton-Raphson method to estimate the root of f{x) =
e " — x,employing an initial guess of x5 = 0.

Solution. The first derivative of the function can be evaluated as

flx)y=—=e""~1
which can be substituted along with the original function into Eq. (6.6) to give
e " — x;

Xi = X; — =
i+4] I} _E_“ _ 1

Starting with an initial guess of xo = O, this iteraiive 2quation can te apelied to compute

La m Ry S LS TTPRIRERLT " e LR W O T TR e TSR T E

Xx; Ep {%}

0 0 100

1 0 500000000 11.8

2 0.566311C003 0.147

3 0.567143165 0.0000220
4 0.567143290 < 10-3

Thus, the approach rapidly converges on the trueroot. Notice that the true percent relative
error at each iteration decreases much faster than 1t does in simple fixed-point iteration
(compare with Example 6.1).

44
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EXAMPLE 6.5 Example of a Slowly Converging Function with Newton-R aphson

Problem Statement. Determine the positive root of f(x) = x'? — 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

x!.m -1

10x]

which can be used to compute

Xigy = X —

Iteration x
0 0.5
| 51.65 ]
2 46 485 '
3 41 8365
A 37.65285
5 33 BB7565
oc 1. O000000
Thus, after the first poor prediction, the technique is converging on the true root of [, but
at a very slow rate.

by Martin Mendez, 45
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The Secant Method

11N/ LAV 1LVANVUILIALIVUNL

A slight variation of Newton’s method for
functions whose derivatives are difficult to
evaluate. For these cases the derivative can be

approximated by a backward finite divided
difference.

|
NCORRICORS[CHY
X =x—f(x) it i=1,23,...
f (Xi)_ f (Xi—l)

Chapter 6 46
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Fig. 6.7

« Requires two 1nitial 0 4
estimates of x , e.g, X,
x,. However, because
f(x) 1s not required to
change signs between
estimates, 1t 1s not
classified as a

fx;)

f(-xffl)

“bracketing’” method.

 The secant method has

the same properties as

Newton’s method.
Convergence 1s not
guaranteed for all x,

f(x).

Chapter 6 47
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EXAMPLE 6.6 The Secant Method

Problem Statement. Use the secant method to estimate the root of f(x) = e™* — x_ Start
with initial estimates of x_; = 0 and xp = 1.0.

Solution. Recall that the true root is 0.56714329. . . .
First iteration:
x_; =0 flx_)) = 1.00000

xg =1 flxa) = —0.63212

xp=1- 0632120 1) _ ) 61270 & = 8.0%
| — (—0.63212)

Second iteration:
x0 =1 flxg) = —0.63212
x; = 0.61270 flx;) = —0.07081

(Note that both estimates are now on the same side of the root.)

-0.07081(1 — 0.61270)

—0.56384 & = 0.58%
—0.63212 — (—0.07081) -

x3 = 0.61270 -

Third 1teration:
x; = 0.61270 flx;) = -0.07081]
x3 = 0.56384 f(x3) = 0.00518

0.00518(0.61270 — 0.56384)
—0.07081 — (—0.00518)

x3 = 0.56384 — = 0.56717 g, = 0.0048%

O L Ll LT e T T T o SR D N S



Fig. 6.8

False position Secant

Fo 4 fx,) fx) 4 Fx;)

f{x) 4

(d)

Chapter 6 49

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



1ed Secant Method

41 AA0 1Vl

The Modi

1IN/ A VAUNS

* Rather than using two arbitrary values to estimate the
derivative, an alternative approach involves a fractional
perturbation of the independent variable to estimate

£ (x).

F1(x) = f(xigiéxi)
X =X — o (X))
T E %) — F(X)

Where ‘delta’ is a small fraction change

Chapter 6 50
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Modified Secant Méthod

Probl ’
em Statement.  Use the modified secant method to estimate the root of f(x) =

™" — x. Use a value of 0.0] f !
056714329, Yl tor § and start with xo = 1.0. Recall that the true root is

Solution.
First iteration:
xp =1 flxg) = —0.63212
xg + dxg = 1.01 flxg +dxg) = -—064578
' 0.01(—0.63212) '
o= ] — e T T =2(,537263 . g = 5.3%
H —0.64578 — (—0.63212) ler] = 5.3%

Second iteration: |
xp = 0.537263 fxg) = 0.047083
X 4 dxg = 0.542635 Fflxo + 8xp) = 0.033579

0.005373(0.047083)
xy = 0.537263 — - = 0.56701 = 0.0236%
v = 0937203 = 57038579 — 0.047083 o ’

Third iteration: : _
xg = 0.56701 flxg) = 0.000209
xXo + 8x¢ = 0.572680 flxo + 8xq) = —0.00867

0.00567(0.000209) - e
¥ = 0. _ — 0.567143 — 2365 x 10759
v = 056701 — — e e 6.000200 &l % °
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PROBLEMS

6.1 Use simple fixed-point iteration to locate the root of

F() = 25in(y/x) - x

SN, e :
Use an initial guessof xy = 0.5 and iterate until £5,< 0.001%. Ver- the root.

ify that the process is linearly conver;
6.2 Determine the highest real root of

F) =23~ 117x2 4+ 17.7x = 5
(a) Graphically.

(b) hx}e(d~pomt. iteration method (three iterations, Xg = 3). Note:
— N .
Make certain that you develop a solution that converges on

g

gerit as desoribed in Bos 6.1, (¢) Newton-Raphson method (three iterations, xy = 3).

(d) Secﬂfl[ methqd (three iterations, x_) = 3 Xp = 4)
(e) Modified secant method (three iteratiox;ls, Xo =Z; 8 =0.01
Compute the approximate o o

I percent relati
e tive errors for your

Chapter 6

Copyright © 2006 The McGraw-Hill Companies, Inc. Permis:

6.3 Use (a) fixed-point iteration and (b) the Newton-Raphsan
method to determine a root of f(x) = x4 1.8x 4+ 2.5 using
xp = 5. Perform the computation until &, is less than & = 0.05%.
Also perform an error check of your final answer.

6.4 Determine the real roots of f(x) = —1 + 5.5x — 4x? +0.5x ¢
(a) graphically and (b) using the Newton-Raphson method to
within g, = 0.01%. :

6.5 Employ the Newton-Raphson method to determine areal root for
flx) ==1455x -~ 4x? + 0.5x* using initial guesses of (a) 4.52
and (b) 4.54, Discuss and use graphical and ahilyfical methods to
explain any peculiarities in your results.

6.6 Determine the lowest real root of flx)=-12—-2lv+
18x2 — 2.4x%: (a) graphically and (b) using the secant method to a
value of &, corresponding to three significant figures.

6.7 Locate the first positive root of

F(x) = sinx +cos(l + Wy =1

where x is in radians. Use four iterations of the secant method with

initial guesses of (a) xiy = 1.0 and x; = 3.0: {b) xj-, = 1.5 and

x;i =25, and (€) xiop = L5 and x; = 2.25 to locate the root.

(d) Use the graphical ‘metho‘d to explain your results.

6.8 Determine the real root of x*3 = 80, with the moditied secant

method to within &, = 0.1% using an initial guess of g = 3.5 and

8§ =0.01.

6.9 Determine the highest real root of f(x) = 0.95x" — 5.9x% +

10.9x — &: '

(a) Graphically.

(b) Using the Newton-Raphson method (three iterations.
X = 35)

(¢) Using the secant method (three iterations, Xy = 2.5 and
A= 35)

(d) Using the modified secant method (three iterations, X; = 3.3,
§ = 0.01). K
6.10 Determine the lowest positive root of f{x) = 8sin(x)e™ — L:

(a) Graphically. ) .

(b) Using the Newton-Raphson method (three iterations,
x5 =0.3%

(¢) Using the secant method (three iterations, xj- = 0.5 and
X = 0.4). .

{d) Using the modified secant method (five iterations, v; = 0.3.
5 = 0.0}).



Roots of Polynomials
Chapter 7
e The roots of polynomials such as
f (X)=a +ax+a,x’ +...+ax"
Follow these rules:

1. For an nth order equation, there are n real or
complex roots.

2. If n 1s odd, there 1s at least one real root.

3. If complex root exist in conjugate pairs (that 1s,
A+l and A-u), where 1=sqrt(-1).

Chapter 7

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

53



Conventional Methods

* The efficacy of bracketing and open methods
depends on whether the problem being solved
involves complex roots. If only real roots exist,
these methods could be used. However,

— Finding good 1nitial guesses complicates both the
open and bracketing methods, also the open
methods could be susceptible to divergence.

* Special methods have been developed to find
the real and complex roots of polynomials —
Miiller and Bairstow methods.

Chapter 7 54
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Poiynomial Evaluation and Differentiation

Although it 1s the most common format, Eq. (7.1) provides a poor means for determining
the value of a polynomial for a particular value of x. For example, evaluating a third-order
polynomial as

f3(x) = azx>+ apx’+ ay x + ag (7.11)

involves six multiplications and three additions. In general, for an nth-order polynomial,
this approach requires n(n + 1)/2 multiplications and n additions.
In contrast, a nested format,

fi(x) = ((a3x + a2)x +a))x +ap (7.12)
involves three multiplications and three additions. For an nth-order polynomial, this ap-

proach requires n multiplications and »n additions.

Succinct pseudocode to implement the nested form can be written simply as

DOFOR j = n, 0, —1
p=p*x+alj)
END 00

by Martin Mendez, 55
UASLP
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evaluate both the function and its derivative. This evaluation can also be neatly inclu
adding a single line to the preceding pseudocode,

DOFOR j = n, 2. -1
df = df = x+p

p=p#*x+alj)
END OO

where df holds the first derivative of the polynomial.




Miller Method

Miiller’s method obtains a root estimate by
projecting a parabola to the x axis through three
function values. Figure 7.3

f(x) Straight f(x) 4

line _ : ff :
I },ﬁ |

Root : . : : Parabola
estimate : : :
| | |
I I |
I | [
| | |
| | |
I | |
| | |

1 - 1 | o
Xg X 2 LI
Root Root Root
estimate
(a) (b)
Chapter 7 57
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Miller Method

* The method consists of deriving the
coefficients of parabola that goes through the
three points:

1. Write the equation in a convenient form:

f,(X)=a(x—X,)" +b(X—X,)+C

Chapter 7 58
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2. The parabola should intersect the three points [x,,
f(x,)]s [X1, T(X)]s [X5, T(X,)]. The coefficients of the
polynomial can be estimated by substituting three
points to give

f(x)=a(x,—x,)>+b(x, —X,)+C
f(x)=a(x —X,)*+b(X —X,)+C
f(x,)=a(x,—x,)>+b(x, —X,)+C

3. Three equations can be solved for three unknowns,
a, b, c. Since two of the terms in the 3" equation
are zero, it can be immediately solved for c=f(x,).

f(xo)_ f(xz) = a(Xo - X2)2 +b(xo - Xz)
F(x)—T(x)=a(x - X2)2 +b(X, —X,)

Chapter 7 59
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It

h, =x;-X, h, =x, -x,
50 — f(xl)_ f(xo) 51 — f(Xz)_ f(Xl)

X =% X, =X
(h, +h)b—(h, +h)’a=h s +hs

. Solved for a
hb— hfa =h,o, and b
a= =% b=ah +5, c=f(x,)
h, +h,

Chapter 7
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Roots can be found by applying an alternative form of
quadratic formula:

. -2c
b++/b? —4ac

The error can be calculated as

Xy =X,

_ X~ %

X
3

100%

+term yields two roots, the sign is chosen to agree with b. This
will result in a largest denominator, and will give root estimate
that 1s closest to x,.

Chapter 7 61
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* Once X5 1s determined, the process 1s
repeated using the following guidelines:

1. If only real roots are being located, choose the
two original points that are nearest the new root
estimate, X5.

2. If both real and complex roots are estimated,
employ a sequential approach just like 1in secant
method, X4, X, and X4 to replace X,, X{, and X,.

Chapter 7 62
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Problem Statement. Use Miiller’s method with guesses of xg, x;, and x; =45, 5.5,
and 5, respectively, to determine a root of the equation

fx)y=x =~ 13— 12
‘Note that the roots of this equation are 3, -1, and 4.
Solution,  First, we evaluate the function at the guesses
fld.5y=20625  f(5.5)=82875  f(5) =48

which can be used to calculate

hp=5355~-45=1 : hy=5-55=-05 |
82.875 — 20.625 48 — 82.875 '
8 = = 62.25 6y = ————— = 69,75
? 55-45 YT 558
These values in turn can be substituted into Eqs. (7.24) through (7.26) to compute

_69.75 - 62.25
T 0541

The square root of the discriminant can be evaluated as
V62252 — 4(15)48 = 31.54461

Then, because 162.25 + 31.54451] > |62.25 — 31.54451|, a positive sign is employed in
the denominator of Eq. (7.27b), and the new root estimate can be determined as

—2(48)
W=t s g arsaast o0 o
and develop the error estimate
~1.023513
3.976487
Because the error is large, new guesses are assigned; vy is replaced by xy, x; is replaced by
xa, and xy is replaced by x;. Therefore, for the new iteration,

=55 =5 x=3076487 : R

=15  b=15(-05)+69.75 =6225 =48

100% = 25.74%

Ey =
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and the calculation is repeated. The results, tabulated below, show that the method con-
verges rapidly on the roat, x, = 4:

> Eaq (‘Vo)
2
3.976487 . 25.74
4.00105 0.6139
4 0.0262
4 0.0000119




Pseudocode for Miller's method.

SUB Muller(xr, h, eps, maxit)
X2 = Xr ‘
Xp = X + %,
X0 = Xr — h*%,

0o
iter = iter + 1
hg= X1 = X
hy= X=X

doj': (f(Xl.) - f(xp ) / hg '
dy = (f(xs) = f(x;}) ! h
g =(d) ~ dy) [ {hy + hg)
b=a%h +
¢ = f(xs)
rad = SORT(b*b — 4*a*c)
If |b+rad| > |b-rad| THEN
den = b + rad
ELSE
den = b — rad -
ENp IF '
dx, = =2* | den
o= X+ dXe
PRINT iter, X

IF (|dx-| < eps*x. OR iter >= maxit) EXIT

Xp = X)

X = X7

Xy = Xy
END 00

END Midller



Tarea

7.3 Use Miiller's method to determine the positive real root of

@ f=xr+x-3x-5

() fr) = =05 +4x~3 :

7.4 Use Miiller’s method or MATLAB to determine the real and
complex roots of

@ f)=xX -3 +3x—2

(b) f(x) = 2¢* + 6% + 10

© fy=x' =23 +622-8x+8

Chapter 7
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Polinomial evaluation and
Differenciation

; 1
f3(x) = f£3.1‘3+ arX~ - mx -+ agp
six multipltcations and three additions.

F3(X) = ((aax + aa)x 4+ a))x +aq
three multiplications and three additions.

Chapter 6 67
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Evaluating the polinomial

DOFOR j = n, 0, —1
p=p*x+alj)
END DO |
Evaluating the polinomial and its derivative

DOFOR j = n, 0, —1
df = df * X+p

p=p * X+§(j)
END D0

Chapter 6
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Polynomial deflation

This 1s to eliminate the found root from the
polynomial

f5(x) = —120 — 46x + 79x” —3x° — T + x°

Forma factorizada

)= DEEDAEdDNRE ) (- 2)

Roots

Si se divide el polinomio entre cualquiera de sus factores, el resultado sera
un polinomio de grado 4 con un residuo igual a cero.
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Seudocodigo

= a(n)
a(n)=0
DOFOR 1 =n-1,0,-1

s=a(1)
a(1)=r
R=s+(r*t)
ENDDO

Divide un polinomio
de n-¢simo grado
entre un monomial
x-t

Ejemplo:
f(x)=(x-4)(x+6)=x"2+2x-24

Dividiento entre x-4

Usando los parametros de suedocodigo:
n=2,a0=-24,a1=2,a2=1 y t=4

Entonces r=a2=1
a2=0

[terando en el loop desde 1=2-1 hasta 0:

Para 1=1

Chapter 6 70
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SUB poldiv(a, n, d, m, q, r)

DOFOR j = 0, n
r(j) = a(j)
g(j) =0

END DO

DOFOR k = n—m, 0, —1
qglk+1) = rim+k) | dim)
DOFOR j = m+k—1, k, —1

r(j) = r(j)=qk+1) « b{j—k)
END DO
END DO |
DOFOR j = m, n ;
r(j) =0 :

.END DO

o= n-m _,

DOFOR 1 =0, n
ali) = g(i+1)

END DO

- END SUB

Algorithm to divide a polynomial {defined by its coefficients a} by a lowerorder polynomial d. 72
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